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Atomic spectral line free parameter deconvolution procedure
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We report an advanced numerical procedure for deconvolution of theoretical asymmetric convolution inte-
gral of a Gaussian and a plasma broadened spectral line prgfie\) for spectal lines. Our method deter-
mines all broadening parameters, self-consistently and directly from the line profile with minimal assumptions
or prior knowledge. This method is useful for obtaining complete information on all plasma parameters directly
from the recorded shape of a single line, which is very important in case no other diagnostic methods are
available. The method is also convenient for determination of plasma parameters in the case of a symmetrical
profile such as Voigt one.
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[. INTRODUCTION transfer, which is especially important for strong lines and
high pressures. This effect broadens the lines and may there-
The investigation of broadening of the spectral linesfore lead to an anomalously large width. In addition, line
through different plasma parameters, which represent physiarrowing is possible in cases of population inversion. Fi-
cal conditions and state of plasmas, helps us to understantlly instrumental broadening is another broadening mecha-
the underlying physical mechanisms. Theoretical knowledgaism.
of physical mechanisms of broadening, based on plasma pa- Most measurements have been concerned with isolated
rameters, can be used for determining physical conditionines of neutral atoms and of ions in low and intermediate
and state of plasmas by analyzing the shapes of atomic specharge states for a large number of elements. Besides this,
tral lines. That approach can be useful for determining pathere is also a great need for reasonably accurate measure-
rameters for laboratory plasmas as an independent methodhents under well-defined plasma conditions. For most of
but this is especially true in the case of astrophysical plasthese measured lines, the electron impact broadening should
mas. In fact, the only diagnostic of astrophysical plasmas isndeed be the dominant mechanism, except for only partially
the investigation of their radiatiotspectral lines and con- ionized gases. The state of art in impact line broadening
tinuum). The investigation of the spectral line shapes andheory today is well represented by the convergence of fully
parameters is very important because most of the informaguantum mechanical and semiclassical calculations. This
tion about celestial objects is acquired in that way. situation is well described in a number of papers dealing
In principle three different agents may contribute to thewith impact broadening, Ref§4—8].
final width and shape of a spectral line: natural broadening, All the above-mentioned processes have an influence on
Doppler broadening, and interactions with neighboring parthe shape of the spectral lines. In most cases, it is resonable
ticles [1-3]. The natural broadening is usually very small to presume Doppler and Stark broadenfogany other kind
compared to the other contributions and has the well-knowof pressure broadenihgas being statistically independent
Lorentzian or dispersion distribution. Doppler broadeningprocesses. In this case the electron collision is irrelevant re-
originates from the statistical velocity distribution of the garding the Doppler broadening, but it is very important for
emitting atoms, being directly dependent upon the plasmaressure broadening. The corresponding profile contributions
temperature. In the case of Maxwell distribution of velocitiescan be separately convolved to obtain the total shape of the
the Doppler broadening has a Gaussian distribution. Théne. In order to analyze the experimental data the first step is
third mechanism depends on the electric microfields ofhe fit to a Lorentzian profile. The fit to Voigt profile is more
neighboring particles and includes Stark, van der Waals, andppropriate, because it includes Doppler broadening as well
resonant broadenings. This mechanism becomes importaas the Lorentzian profile. This profile can be used if the
with the increase of the pressure and represents the so-calletape of the measured line is symmetric, which is usually the
pressure broadening. The profile representing this broadewase of ionized emitters, where it is normally possibly to
ing, in the case where electron broadening dominates, is meglect the interactions between the emitter and perturbing
symmetric Lorentz function. For neutral and ionized emittersons. In the case of neutral and ionized emitters for which
for which ion broadening is generally not negligible, a morebroadening by ions is not negligible, the line profile is often
convenient profile is the asymmetrig g(\) profile, Ref.  asymmetric. In principle there is no fundamental difference
[2]. Resonant and van der Waals broadening may be impobetween the singly and multiply ionized emitters. However,
tant for neutral atom broadening and they should generallyhe quasistatic approximation for perturbing ions is better
be at least estimated. This requires some independent mesatisfied for singly than multiply ionized emitters within a
surements or estimation of neutral atom densities, in additiogiven isoelectronic sequence because the relevant energy
to the usual measurements of electron density and electra@pacings are smaller and the widths are laf§¢rThe most
temperature. convenient fit in these cases is the fit to the so-call&d
One additional broadening factor in plasmas is radiativeunction, i.e., the convolution integréRef. [2]) of a Gauss-
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ian and a plasma broadened spectral line prafil&(\). ' T : '

Besides thg , r(\) and Doppler widths, the static ion broad- 1.0+ ,E'\( - - Kfunction |
ening parameted, and Debye shielding and ion-ion correla- 0.9 | /’ i\ e {/‘;’;'““" i
tion parameteR, play an important role in th& proﬂle._ 08 ;e Lo ez |
It should be mentioned that ions are not necessarily qua- 2 AN — Gouss
sistatic. Some old dynamical treatments of ions may be 307 ' T

found in Refs[2] and[10]. If ions are quasistatic, we gen- Eo.e_
erally get an asymmetric profile. As shown in Réfkl], [5], 205
and [12] in the general caséi.e., ion dynamick there is § ’

always an impact ionic contribution, which simply adds to £94-
(and may not be distinguished frore electron impact con-  £0.3 4

ens

tribution. The relative importance of this impact ionic con- 4, | N . i
tribution diminishes with increasing density. We must em- - : .
phasize that care must be taken in interpreting the line L - : -t
broadening parameters if ion impact is important, as we can- 0.0 , i , ,
not experimentally distinguish between the electronic and J Rel. wavelength [nm]

ionic contributions. ) , .
In this paper the asymmetry of the lines refers to the FIG. 1. GaussDoppley, Lorentz and » g (impac profiles with

L . equal half-widths(FWHM). Also shown are the Voigt anid pro-
asymmetry brought at?out by quasistatic broademng’ CONSkies resulting from the convolution of Gauss and Lorentz, and
quently the approach ignores a number of important factorsg 5 ;<5 and, g, respectively.
which may also contribute to the asymmetry of the lines, ’
such as the gradients, quadrupoles, shifts, or some other ef-
fects.

The absence of appropriate deconvoluting procedure for G(M_GO-‘_G"‘{”@XP(
the most general theoretic#l function, which completely

describes the broadening of the atomic spectral lines, madghereG, is the baselindoffset, G4, is the maximum in-

us initiate this. paper. When the experimentalist gets a ””‘fensity(intensity forh=X\,), and\, is the wavelength of the
without ana priori knowledge of the plasma parameters, ongjine center, with the Doppler full width at half-maximum
would like to be able to extract them directly from the ex- given by

perimental spectrum. To this end we have devised a new
deconvolution method.

41n2(N—X\,)?

. (22
]

21N 2KT A,

e (2.3

Il. THEORETICAL BACKGROUND

Traditional classification, according to the mathematical Here.T is the emitter equivalent kinetic temperatuneis
approximations introduced into a more general theory of lind!S Mass, ané andc are the Boltzmann constant and velocity
broadening, recognizes the quasistatic approximation firgf the light, respectively. The shape of this line is shown in
developed by Holtsmark, impact approximation first treated19- 1, along with other considered line profiles.
by Lorentz, and a number of intermediate approximations. It is well known that the intensity dlstrlbutlo_n of a spectral
and computer simulatiorf8]. The corresponding line-shape line broao_lened by two independent effects is expressed by
functions have no simple analytic forms, with the exceptionth® equation
of the impact approximation for isolated lines, i.e., lines that
are not overlapping with other transitions in the same spec- _ | IR / /
trum. In this impact approximation the profile of the line is f)= ffwg()\ o= ADRA)AN". 24
Lorentzian and is given by

Hereg(\') andh(\") are the profiles that can be used if
WE only one of the broadening effects is present. All functions
(21)  f, g, and h denote intensities, anal’ is given in either
wavelength or frequency units.

Whenever the Gaussian contribution of plasma broaden-
whereL, is the baselin€offsed, L., is maximum intensity ing is not negligible one has to use a deconvolution proce-
(intensity for N\=\,), W, full width at half-maximum dure to determine the Stark width of the line. Where the
(FWHM), i.e., the so-called half-width and, the wave- electron impact broadening is the dominant mechanism, the
length of the line center. Besides the Lorefitnpach, the  contribution of ions to the line profile may be neglected, as is
Gaussian(Dopplep function is also important in plasma the case of the majority of the ionized atoms. The resulting
spectroscopy. In many cases, assuming the velocity distribyprofile has the Voigt form Ref{13]. Then one is dealing
tion to be Maxwellian, i.e., the relevant isotropic velocity with a Lorentzian distribution, the deconvolution from the
distribution to be Gaussian, the corresponding line-shap&aussian part being described in several paf8s-15.
function has the Gaussian form In the case of a Voigt function, Eq2.4) is

LV =Lo+ Lpa————5—
B TP WA
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V(N)= Vot VW2 tron broadenings and is given by RE]. Ris the ratio of the
mean distance between ions to the Debye radius, i.e., the
f’ﬂ exp(—t?) g Debye shielding parameter aid, is the width(FWHM) of
t, the j file. The Debye shielding parameter for a singl
VY _ Ta2\+112 J pro Yy gp aly
WEHAIA = (ot (We/2VIn 2)D)] ionized atom is given for singly charged perturbers[ By
(2.9
_ _ _ _ 6 [36me°N,

whereV, is the baselingoffset) andV ., is the maximum of R=\/—=7 (2.7
intensity (intensity forA =X\,). (kTe)

. Hgnwe:j/er,_ In t_he case of nonhydrogenllp %[Iom'cémﬁs ;[_h%Nhere N and T, are the electron density and temperature,
lon broadening in most cases is not negligible and the liNgaqheiively. This parameter can be calculated, in the case of

profiles are described by an asymmetric function. In the quagouble and multiply ionized atoméperturbers from the
sistatic ion approximatiofRef.[2]) the profile of an isolated equation forR, given in Ref[2]

spectral line emitted by a nonhydrogenic emitter is given by " g|ecqric microfield distributions in plasmas have been cal-
. H culated by Hoopef16,17). For the Holtsmark limit, i.e., for

jAR()\):jo""jmaxf R(A) dg, R=0, this function has the form

' 0 1+[2(N—N\o) /W, — ap?]?

@8 Hr-o(8)=Hof f xsin(Bx)exp —x39dx, (2.9
where j, is the baselinej ., the maximum intensity, and °
Hgr(B) an electric microfield strength distribution function of whereH, is a normalization constant.
normalized field strengttB=F/F,. F, is the Holtsmark Finally, the convolution integral of both Gaussian and
field strength A(a=A*3), the static ion broadening param- Stark broadeningajr profiles, according to Eq(2.4), is
eter is a measure of the relative importance of ion and eleagiven by

_ ” ol [ Hr(B) asld
K K°+Kmaxf_weXp( t)“o 1+[2(N =N o— (We/2\In 2)t)/ W, — @ ?]? p|dt (&9

HereK, is the baselingoffset) and K.y is the maximum of 4.03x 10" "W,[nm] “
intensity (intensity for\ =\,). TheK function, i.e., the con- o= '2 (Ne[m*S])z’e’\/W,
volution integral(2.9) contains Voigt and Lorentz functions (A[nm]) oL K]

too. Namely, when the spectral line is symmetric, from the (2.10

unified fitting procedure the paramet&rcomes out equal to whereW; is the electron FWHM al,= 10%m 2 and p is

zero. Thus, expressio(2.9) reduces to Eq(2.9. In this  the atom-ion perturber reduced mass in amu. The condition
transformation use has been made of the fact that, the electrig validity for the ion dynamic correction is often expressed

microfield distributions in plasmas were normalized to onepy

The derivation of the Lorentz function is not as evident as

the derivation of the Voigt function. First, it yields from the B=A"s<1. (2.1
unified fitting procedure, again, the parameferequal to ) ) ) o

zero. Second, it derives from the assumption that the Gauss 1€ physical meaning of this condition is that all strong
function does not have any influence on the final width of the€l€ctron and ion collisions are separated in time, and have to
spectral line. HenceWg—0, i.e.,t—%, which means that be checked in all exp_enmental cond|_t|ons. _

the Gauss function may be replaced with the delta function. From Ref. [10] a simple parametric expression was de-
Because of the delta function, the convolution integga®) _r|ved fo_r the eva_luatlon of th_e total fuII_ width fqr dynamic
has a value different from zero only far =\ —\,. Finally, ions (_)f isolated Imes_. Whe_n ion dynamics con_trlb_utes to the
all these transformations lead to the Lorentz function. In conlinewidth, the total line width of the<(\) profile is well
clusion, it should be specified again, that théunction(2.9) ~ represented for neutral atoms by

in plasma broadening is represented as a general case of a

spgctral line profile. thus, ill‘othere is a goodgfitting method, Wi=Wi[1+1.7AD4(1-0.7R)], (212
the fitting procedurg will find which function represe_nted the and for singly ionized atoms by

recorded spectral line and the parameters of that line.

For the evaluation of the influence of ion dynamic effects W~W,[1+1.75AD,(1-1.2R)], (2.13
on the shape of nonhydrogenic atom lines we used the pa-
rameter where
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1.36

D= 1751-07m)

1.36 3 evaluating this microfield distribution, among which best
B—l/3, B<( ))

1751-0.7R) known are the Holtsmark18], Baranger-Mozef19], and
' ' (2.14 Hooper[16,17 methods. By far the fastest method is the
' APEX method 20,21], whose accuracy was demonstrated by

or its excellent agreement with computer simulations. However,
APEX does not employ th& parameter and this would ne-
1.36 3 cessitate a modification of the standaradinction. The solu-
D,=1, B= 1751-0.7R)] (2.19  tion adopted in the present paper is to solve the integral

equation for the microfield distribution for a sufficient num-

In the caseéD ;=1 the influence of ion dynamics is negligible Per of points 8,R) and use this interpolation table to evalu-

and the line shape is treated using the quasistatic ion agite the microfield distribution at the points needed for the

proximation. Expression€2.12 and(2.13 are approximate integral evaluation by polynomlal mterpolatlon..

total widths of a line, only when the influence of ion dynam- ~ For the purpose of testing and demonstrating our decon-

ics is not negligible. This is an approximate total width be-Volution procedure we have decided to use a tabulated

cause of the used functigifx ,A,R) instead ofj (\,A,R, o). c_lataset of values of the microfield _str_ength distribution func-

Namely, Barnarcet al. [10] presents a simple algorithm for tion, evaluated by Hooper. The existing sets of data allowed

generating thej(\,A,R,o) profile obtained by fusing the USto use a fou.rth—order polynpmlgl as the hlghes_t. Thus, in

electron and ion contributions. One can evaluate the ion dyeur case the interpolated microfield strength distribution

namic correction to the FWHM by comparing the widths of function has the following form:

the unifiedj (\,A,R, o) to those of thg (\,A,R) profiles, for

which _ions are treated as guasistatic. In the region where Eg. Hr(B)=as+ bBR+CBR2+ dBR3+eBR4v 3.1)

(2.11) is satisfied, the difference between the two widths is

due to ion motion. Differences between the widths computed

form thej(\,A,R) and the actual widths of thg\,A,R, o) whereag, bg, cg, dg, andeg are parameters that depend

profiles are less than 1% f@<1, where the unified theory on normalized field strengts. The five interpolating poly-

is valid. nomial parameters lead us to a system of five equations with
Expressions(2.12 and (2.13 are valid only in theR  five unknown parameters, and this system is not very diffi-

<0.8 and 0.05A<0.5 domains. Referenci?] also dis- cult to handle.

cusses cases outside this range. Expression(3.1) is applicable for any emitter for which
there is a date base of microfield strength distribution func-
IIl. NUMERICAL PROCEDURE FOR DECONVOLUTION tion. For neutral and singly ionized emitters there exists a

tabular date base in the papgfs] and[17]. It should be
The proposed functions for various line shapes, E29) noted, that this deconvolution procedure may involve any
and(2.5), are of the integral form and include several param-method of calculation of microfield strength distribution
eters. Some of these parameters can be determined in seffianction depending on the kind and composition of analyzed
rate experiments, but not all of them. Furthermore, it is im-plasmas.
possible to find an analytical solution for the integrals and The second integral in Eq2.9) is the j, gr(N\) and it is
numerical methods must be used. This procedure, combineslaluated by trapezoidal quadrature. The third integral is
with the simultaneous fitting of a several free parametersevaluted by the Gauss-Hermite method with ex{¥f as a
causes the deconvolution to be an extremely difficult taskveight function. In this manner the number of terms in the
and requires a number of computer supported mathematicaumerical sum is reduced in comparison with other quadra-
techniques. Particular problems are the questions of conveture methods. The same method may be used inE§. It
gence and reliability of the deconvolution procedure, whichmust be noted, that in cases wheYé{>0.5W;) in Eq. (2.9
are tightly connected with the quality of experimental data. or (Wg>0.5W,) in Eg. (2.5, which represent frequent
For deconvolution purposes we are looking to best fit thephysical situations in astrophysical plasm2g], this method
experimental profile in a six-dimensional parameter spacef integration is not applicable. Then, the integration must be
(Kmax:ho W, ,\Wg ,RA). Furthermore function evaluations are done by classical quadrature methods, which greatly slow
expensive, as the computation of a triple integral is requireddown the iteration process, but these methods are the only
The first integral in theK function is the microfield strength correct ones in these regions.
distribution functionHg(), the second one is thig r(\) In general, the base lin€, in functions(2.9) andV, in
function (2.6), and the third is the convolution integral of a Eq. (2.5 is a function of wavelength. In many cases it is a
Gaussian and a plasma broadened spectral line profileearly constant, or linear function, but in some cases it may
iar(N), denoted byK(N), Eq.(2.9). All these integrals have have more complex dependen@s]. We have included in
no analytic solution and must be solved numerically. our procedure the fitting of background by a cubic polino-
The most difficult integral to deal with it is the microfield mial, as independent step, in order to prepare experimental
strength distribution function, because in general this in-data for the main deconvolution procedure.
volves a multidimensional integral over many ionic configu- In this way, we have solved Eq$2.9) and (2.5 and
rations. A straightforward Monte Carlo integration is too ex-now we can start with the fitting procedure itself. For
pensive and many methods have been developed fdEq. (2.9), the fitting procedure will give the values for
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Ws, Wi, Ay, R, A, andK,. In the case of Voigt pro- !
files (2.5, the fitting procedure will determine :
Wg, Wi, Ny, andVay. Joii

We are using the standard manner of defining the best fit: o
the sum of the squares of the deviatidehi-squarg of the — o T
theoretical function from the experimental point should be at’ ooty
its minimum. In other words, we are seeking for the global e | @ @
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priate theoretical functiorN is equal to six for theK profile
and four for the Voigt function.

The necessary condition for the minimum of chi—squarei’oz______ﬁ____
sum is that the partial derivatives of the function are equal to :
zero. Therefore, in the case of teprofile we have a system
of six nonlinear homogeneous equations with six parameter« 0.0 ; ; ; ; ;
and in the case of Voigt profiles we have a system of four 4298 4209 4300 4301 4302 4303 4304
nonlinear homogenous equations with four parameters. We Wavelength [nm]

?r:g ?/ﬁ;t';r?ot\;ﬁ nl\lljg]vftgﬁalrrfgtlﬁct)lgn;Osfljzgz(sassi\)//:tea?p?rgiiumsellljlq _F_IG. 2. Our fit of Ari 430.01 nm line profile. The cirples are
. . . ; digitized from the data of Hahn and Wolf26]. The horizontal
tions. KanForOV'Ch and Ostrowskp4,29 have investigated axis is shifted slightly by an offset in the wavelength calibration of
the conditions of convergence of the Newton method. INhe monochromator, according to RE2S).

these cases we have two homogenous systems of algebraic

and transcendental equations with real coefficients. The . [the borderline is € 3/2W,+\o<\<+3/2W,+X,),

functions are defined and continuous, along with their parti hereW. is the FWHM, and the maximal statistical inde-
derivatives of first and second orders. If the initial parameters ! :

lie in the d . Hiciently cl t the t luti fth erminacy in intensity is 5% at every experimental point.
I€1n the domain sufticiently close 1o the true solutions ot thep experimental measurements weaken the conditioning of
system, the conditions for convergence are fulfilled.

Th : luti f thi blem f b he system of equations, and make this method inapplicable.
€ computer solution 0 ,'S probieém 1aces a NUMDEr Olrpiq has heen demonstrated by testing the sensitivity of the
numerical difficulties. Newton’s method requires successiv

; . . . Igorithm by generating random statistical noise with a
solut|qns of the inverse ‘]a.COb' matrices of the system Ofp qgian distribution in every point involved in theoretical
equations for each step, which are error prone dge 10 rouNgs ofiles. In the case of a Voigt profile, where there are four
off errors. Moreover, the ”“me”cf?" partial derivatives in theparameters, the condition of applicability is more elastic.
Jacobi matrix are themselves subject to roundoff error. These
roundoff errors are a destabilizing convergence, though the
mathematical conditions for convergence are fulfilled. The!V- APPLICATION OF THE METHOD, BENCHMARKING,
algorithm was stabilized by reducing the iteration procedure AND DISCUSSION
to independent parameters only by neglecting the off-
diagonal elements of the Jacobi matrix. This simplification ~The principal objective of this study was the analysis of
alleviates the roundoff errors in the calculation of the inverseasymmetric isolated spectral lines having minimal overlap
Jacobi matrix. Further stabilization of the iterative processwith the neighboring lines, under the conditions of optimum
may be achieved by weighing the off-diagonal elements oplasma source stability. The algorithm is demonstrated by
the inverse Jacobi matrix by real numbers in the raiigg].  fitting experimental data taken from Rg26], and analyzing
These modifications of Newton’s method do not affect eithetthe Ari 430.01 nm spectral line. Hahn and Wo[@6] used
the convergence or the uniqueness of the mathematical solthis argon line to illustrate an asymmetric theoretical fit and
tion, but do affect somewhat the speed of convergence. Ia Lorentzian fit to the experimental data. For that purpose
this way we were able to find numerical solutions for fitting they had to fixR and Wg, i.e., R=0.52 andW;=0.0058
functions with more than three free parameters, which is difnm, respectively. They have obtained for the total width of
ficult for nonpolynomial fits. the lineW,;=0.105 nm and for ion broadening parameter

This algorithm has shown great numerical stability, under=0.137. We have treated the same spectral line with our free
variation of initial parameters. This has been demonstratefarameters fitting procedure, by usigprofile (2.9). The
by fitting of about 100 of experimental data sets, for biéith result is shown in Fig. 2.
and Voigt profiles. The deviation of the asymmetric theoretical fit from the
This sophisticated deconvolution method, which allowsexperimental points is very small. Since the fit is performed
direct determination of all six parameters by fitting the the-without predetermined parameters, we have obtained from
oreticalK profile (2.9), on the experimental data, requires athe fitting proceduréWs;=0.00582 nm,R=0.505, andA
sufficient number of experimental points per line, and small=0.145, and for the total width of the lin&y,=0.107 nm.
statistical errors. The upper limits for well conditioning of All these values are in very good agreement with the data of
this method are a minimum twenty experimental points peHahn and Woltz. According to their resuli26] for Argon
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X 107%m~ 2 for electron density. We have calculated the same
parameters according to our fitting parameters of the neon
line. Our calculated values are 30000 K for electron tem-
perature and 0.96107°m™2 for electron density. Here, we
should point out that their plasma parameters are obtained
from independent measurements. The electron density in the
Ref. [27] was determined by the laser interferometry at a
single wavelengttiHe-Ne laser 632.8 nm lineand from the
Hg profile. For determining the electron temperature they
used the Boltzmann slope of several INénes. We deter-
mined these plasma parameters solely from their recorded
00 T o neon spectra lines. For this neon line theoretical values by
- ————— " —— Griem are given in Ref.2]. The ratio between the measured
010 s v%%%?eng&‘f&fmnf““ 64033 value and Griem’s result is 0.78 for this line, according to the
results of Ref[27]. On the other hand, the ratio between the
FIG. 3. Our fit of Net 640.22 nm line profile. The circles are calculated value from our deconvoluting-fitting procedure
digitized points from data in Ref28]. and Griem’s theoretical value, for the same neon line, is
0.95. This discrepancy is attributable to the use of a wrong
“blue” lines, their plasma parameters are 0.6280°m 2 distribution function for fitting of neutral lines in Reff27].
for the electron density and 11900 K for the electron tem- This comparison has demonstrated a big advantage of our
perature. They have determined the electron density from thmethod, as compared to earlier ones. Our fitting procedure
width of the hydrogen K line by the Vidal-Cooper-Smith can provide all plasma parameters. This is particularly im-
Stark broadening theory. They determined the temperaturgortant for astrophysical studies.
by applying the conservation and equlibrium equations for Up to now, to the authors’ knowledge, all existing decon-
local thermodynamic equlibrium plasmas. For determiningvolution procedures, Ref§26,29—-31] require at least one of
their plasma parameters we used E@3) and (2.7). Our  parameters to be known and fixed during the fitting. For the
calculated values are 0.8110°> m~2 for electron density Voigt andK convolution integrals it is necessary to fiflg
and 12500 K for electron temperature. The difference beer Wg andR, as in Refs[26,29-31. In Ref.[29] and Ref.
tween our calculated and their measured plasma parametdg®l] the fitting procedure is performed by the convolution
shows that each line “senses” plasma conditions differentlyintegral of a Gaussian and a plasma broadened spectral line
This slight discrepancy is however within experimental un-profile j 5 r(\), for isolated spectral lines, but with the use of
certainty. We have applied the method to Hahn and Woltz'sy fixed value for the ion broadening parameterA simple
measured spectral line and obtained the same parametersrasthod for estimating\ is described in Ref32]. For the full
they did, without any prior knowlede or assumption of the evaluation of the ion-broadening parameesne can use the
plasma parameters. formula given in Ref[2]. In our deconvolution procedure of
We have also used other lines to test our deconvolutionatomic spectral line profile all plasma parameters are free,
fitting procedure. For this, we chose one neon line for whichincludingWg, R, andA, and they can be determined directly
results have been presented in R&f7]. The shape of this from the fitting procedure itself.
line was obtained from Ref28]. We have chosen this line It should be noted that to apply this deconvolution and
for two reasons. First, the authors of Rgf7] used the Voigt  fitting method some assumptions or prior knowledge about
function for fitting to the experimental profile, and second,plasmas condition are necessary. Accordingly, for each emit-
the asymmetry of this line is higher than the line of Hahn ander ionization stage one needs to know the electric microfield
Woltz. The Voigt function yields the wrong distribution for distribution, in order to fit the “K” function. In the case of
fitting on neutral spectral lines. Therefore it is not possible toquasistatic or quasistatic and dynamic broadenig, our fitting
compare all our fitting parameters with theirs, for example, procedure gives the electron impact width, static ion broad-
parameters. They fix the ¥at the value 0.0191 nm and ening parameter and, finally dynamic ion broadening param-
using the standard fitting procedure described in RBf],  eter, respectivly. But, if ions are dynamic, it is not possible,
they got the Stark width, \=0.0223 nm. Their experimen- as already discussed, to distinguish the electronic and ionic
tal points and our fitting curve is presented in Fig. 3. impact widths, and the method gives the total impact width.
The deviation of the asymmetric theoretical fit from the We have also tested our fitting procedure with the Voigt
experimental points for this line is not small as in the case oindK convolution integral using our experimental data. For
Hahn and Woltz's line, but relatively is not large either. the Voigt function we have used our data published in Refs.
Since our fit is performed without predetermined parameterg,33—3§. The K convolution integral is used for the analysis
we have obtained from fitting procedu®¥;=0.01777 nm, of our new data on neutral rare gases. We have tested more
R=0.3510, andA=0.185, and for the total width of the line, than one hundred asymetric spectral lines, recorded under
W;=0.0272 nm. Our value foWg shows a resonable agree- reproducibile plasma conditions. By comparing different
ment with the value of Puriet al. The authors have pre- spectral lines obtained under the same plasma conditions, we
sented plasma parameters for this line, too. Their plasmgested the stability of our deconvolution procedure. The ob-
paramers are 31400 K electron temperature and 0.9fhined parameters, which are tied to plasma conditions, such

e o o =
- N (-] (=]
1 1 1 1

Rel. Intensity [arb. units)
[=4
©
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asT, andN, are independent from the analyzed lines. Ourfrom the shape of spectral lines without any assumptions or
calculated values of temperature from each spectral line angrior knowledge. All one needs to know is the instrumental

values obtained by the Boltzmann and Saha equations are width of the spectrometer. This procedure can be applied to
very good agreement, withitt 7%. The electron density cal- laboratory plasmas as an independent method for determin-
culated from each spectral line shows even better agreemeimg plasma parameters. On the other hand, in case of astro-

with the values measured by interferometry, the agreemenghysical plasmas, where no other diagnostic method is avail-
being within =5%. able, this method can be very useful.

V. SUMMARY
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